Foldit Plays for Jain Foundation / DYSF

As another example of applying Foldit to human disease, this month we have a puzzle on the protein dysferlin. The deficiency or absence of dysferlin causes one genetic type of Limb Girdle Muscular Dystrophy. Muscular dystrophy caused by dysferlin has autosomal recessive inheritance (meaning it is equally likely to affect females and males) and typical onset between the ages of 15 and 30. The UW Institute for Protein Design is conducting a research project on the structure and function of dysferlin for the Jain Foundation, a nonprofit foundation based in Seattle which supports research and the development of treatments for dysferlinopathy. The exact function of dysferlin is not completely understood, but it is thought to be involved in repair of the muscle cell membrane if it is damaged, and in resetting the muscle to a quiescent state following contraction. Sept. 30 is Limb Girdle Muscular Dystrophy Awareness Day, and we are introducing Puzzle 1291: Dysferlin C2B Domain to commemorate this day and to spread awareness to the Foldit community.

The following video features an interview with a neurologist on Limb Girdle Muscular Dystrophy, and with a patient who has dysferlin deficiency.

Ferlins are a family of transmembrane proteins which contain multiple C2 domains. The N-terminus is located inside the cell, and there is a single transmembrane domain near the C-terminus, which is located on the cell’s exterior. Ferlins are thought to participate in membrane fusion events and are involved in a variety of functions in many organisms. The first ferlin to be described is fer-1 in C. elegans, which is required for sperm function and hence fertility (giving rise to the name “fer”). Ferlins has also been described in drosophila and sea urchins. Deficiencies in two of the five mammalian ferlins have been associated with human disease. Otoferlin is required for transduction of signals from the inner ear to the nervous system for hearing, and its deficiency is a genetic cause of deafness. The most abundant dysferlin isoform in skeletal muscle is 2080 amino acids long, and contains at least seven C2 domains as well as additional protein domains of other types.

( Posted by inkycatz 72 1645  |  Thu, 09/29/2016 - 19:33  |  1 comment )
2
Get Started: Download
  Windows    OSX    Linux  
Windows
(7/8/10)
OSX
(10.7 or later)
Linux
(64-bit)

Are you new to Foldit? Click here.

Are you a student? Click here.

Are you an educator? Click here.
Search
Only search fold.it
Recommend Foldit
User login
Soloists
Evolvers
Groups
Topics
Top New Users
Sitemap

Developed by: UW Center for Game Science, UW Institute for Protein Design, Northeastern University, Vanderbilt University Meiler Lab, UC Davis
Supported by: DARPA, NSF, NIH, HHMI, Amazon, Microsoft, Adobe, RosettaCommons