Foldit Blog
Blog Feed
This is the place where we will describe some of the outcomes and results of your folding work, provide a glimpse of future challenges and developments, and in general give you a better sense of where we are and where foldit hopes to go in the future.

New Classroom Puzzle Series

As many of you know, playing Foldit can be a very effective way to learn about protein structure and folding, as well as other topics in biochemistry. Many teachers have taken advantage of this facet in the past, asking students to play Foldit as part of the class. However, we have not typically designed puzzles in Foldit for the express purpose of biochemistry education.

This winter, Professor Scott Horowitz will be teaching a biochemistry course at the University of Denver, with an emphasized use of Foldit to illustrate specific biochemical topics. Students will read primary literature in biochemistry, and will have access to custom Foldit puzzles that are designed to complement the assigned papers. Ideally, the puzzles will give the students an intuitive feel for the biochemical systems they are learning about, and enable them to better understand the papers they are reading. (And yes, the students will be graded, in part, based on their Foldit score.)

But first, we’re asking for the help of you, the Foldit community! Before assigning these puzzles to students, we’d like to get some feedback from our regular Foldit players—veterans and newcomers alike. Over the next couple of months, we’ll be posting a series of “Classroom” puzzles, with the course reading when possible, and we want to hear your thoughts and opinions about how to make them more useful for undergraduate students.

Check out the first puzzle of the series, 1434: Classroom Puzzle: Phosphates in Biology! This puzzle focuses on the structure of RNA, and the role of phosphorus in biology. The puzzle description links to two related articles: the first is a landmark 1987 paper by Frank Westheimer discussing the unique role of biological phosphates; the second is a controversial 2010 paper by Wolfe-Simon et al. suggesting arsenic as a viable substitute for phosphorus. Please leave comments and suggestions on the puzzle page!

( Posted by  bkoep 113 788  |  Wed, 09/27/2017 - 21:41  |  1 comment )

Introducing Small Molecule Design Puzzles

Hi everyone,

Today we are officially launching the Foldit small molecule drug discovery game mode.

To kick off the new game mode, we are releasing a new puzzle on acquired immunodeficiency syndrome (AIDS). It has been over three decades since the CDC reported on the discovery of AIDS and its cause, the human immunodeficiency virus (HIV). Currently, 17 million people globally are being treated for HIV with antiretroviral therapy (WHO Global AIDS Update 2016). A total of 2.1 million people were infected with HIV in 2015 and 1.1 million people died from AIDS, with the majority of patients being from in Africa.

(Source: UNAIDS Global AIDS Update 2016)

Current treatment therapies focus on blocking the enzymes used by HIV to reproduce. One such enzyme is HIV protease, an enzyme which the virus uses to cleave polypeptide precursors. Without a functioning HIV protease, the virus cannot make the proteins needed to produce new virus particles. Several small molecule drugs have been created to block HIV protease, such as saquinavir and amprenavir. These compounds inhibit HIV protease by binding in the enzyme active site, a large cleft running through the middle of the protein, which prevent the enzyme's substrates from binding to the enzyme. HIV protease is a good test case for small molecule design, as there's a wealth of information about what sorts of compounds bind to the enzyme.

For this puzzle, we are interested in what small molecule inhibitors you can design for HIV protease 1. As a starting point, we're giving you the base fragment for saquinavir in the binding pocket. What we'd like you to do is use the new small molecule design tools to alter the chemical structure of the inhibitor ligand to get a better binding (better scoring) ligand.

We recommend that you use the selection interface (Menu->Selection Interface) for this process, as it gives you the most control, but you can also access some of the drug design tools through the "Modes" entry of the original interface. In particular, the Ligand Design tool will be your main tool for altering the identity of the ligand.

In the selection interface, the Ligand Design tool will pop up after clicking on the ligand. (In the original interface, click Ligand Design from the modes menu before clicking on the ligand.) You can then click one or more individual atoms to change the atom's element, or to add and delete bonds, atoms and groups. Keep in mind the advanced GUI (Main/Menu->General Options->Show advanced GUI) enables additional options under View that may help in working with small molecules. (I like the "Cartoon Ligand" view, myself, as it allows you to select ligand hydrogen atoms.)

Explore the tools and different designs you can make for the small molecule! Remember, you can use the Upload for Scientists button for designs that you want us to look at, even if they are not the best-scoring solutions!

-rmoretti & freeradical

P.S. Didn't follow the development of the drug design mode? Catch up with these previous blog posts:

* Foldit drug design introduction
* Foldit Drug Design Part Two
* Foldit Drug Design Blog: Interface Update
* Drug design puzzles coming your way!
* Let's Get Ready for Drug Design Puzzles!
* Devprev Drug Design Update
* Drug Design Update: Tool Talk
* Drug Design Update: Merk Molecular Force Field
* Big Update: Experimental Client (Drug Design)

(Note that some features discussed are for older versions and have changed since.)

( Posted by  rmoretti 113 984  |  Tue, 09/19/2017 - 23:11  |  0 comments )

A Visit from a Veteran Foldit Player

A couple of weeks ago, the Foldit team had the pleasure of meeting with veteran Foldit player, Timo van der Laan! Timo, who was visiting Seattle from his home in the Netherlands, met with us to discuss volunteering his programming expertise. Timo's background in automating development processes and structuring documentation will be a huge asset as he works with our team on improving Foldit.

The team discussed numerous potential projects and afterward, bkoep took Timo on a tour of the lab where proteins designed by Foldit players are tested. They examined samples of plasmid DNA, each of which encodes the amino acid sequence of a Foldit player designs, which are inserted into E. coli cells. Then they visited the E. coli incubators where the bacteria are grown, with shaking platforms that keep the growth medium turbulent and well-aerated. Timo was introduced to some of the instruments are used to purify proteins, like a column for size exclusion chromatograph (SEC); as well as other instruments that are used to characterize proteins, like the circular dichroism (CD) spectrometer. Lastly, they viewed some of the protein crystallization trays that have been set up for the numerous projects of the Baker Lab.

bkoep and Timo
bkoep and Timo van der Laan on a tour of the Baker Lab

We thoroughly enjoyed meeting Timo after all these years and are looking forward to working with him on whatever project ends up getting nailed down!

You can read more about these instruments and the design testing process in our previous blog post.

( Posted by  smortier 113 2760  |  Wed, 06/21/2017 - 20:17  |  2 comments )

X-ray Diffraction

Since our last blog post, we've carried out an x-ray diffraction experiment with one of our protein crystals. We were lucky that the protein crystal yielded high quality diffraction data, and from this data we were able to solve the first-ever crystal structure of a protein designed by Foldit players—a near-exact match to the designed structure! Below we explain a bit more about x-ray diffraction. In a later post, we'll examine the final structure in more detail.

First, the protein crystal is harvested from the drop using a small loop of nylon, about 0.3 mm across. Protein crystals are often very fragile, so looping the crystal requires a steady hand (i.e. optimal coffee dosage). Even in the loop, the crystal is still immersed in an aqueous solution, with the surface tension of the water helping to keep the crystal in the loop. The loop is rapidly submerged in liquid nitrogen, at a temperature of about -200ºC, which quenches most of the thermal motion of molecules in the crystal.

Once frozen, our looped crystal is mounted on a robotic arm that positions the loop in the path of an x-ray beam. During x-ray exposure, the crystal is kept under a steady stream of cold nitrogen gas to limit temperature increases in the crystal. X-rays have a high energy, and a protein crystal can only endure so much exposure to x-rays before it starts to degrade. The protein lattice could disintegrate from the increased thermal motion of individual protein molecules, or else the x-rays could trigger chemical reactions within the protein, distorting its structure.

X-rays are simply a type of electromagnetic radiation with a very short wavelength—in this case about one angstrom. In an x-ray diffraction experiment, it's important that all radiation has exactly the same wavelength and is focused into a very narrow beam. With our crystal mounted in the path of the x-ray beam, an x-ray detector is positioned behind the crystal, and measures incident x-rays after they strike the crystal and are diffracted by electrons of the protein molecules within. Because of the regular arrangement of atoms in the protein crystal, diffracted x-rays undergo constructive interference in particular directions. This occurs when two equivalent "slices" of the crystal are oriented to coincide with the wavelength of the x-rays. Wherever constructive interference occurs, the detector registers an especially intense signal, shown as a dark spot on the image below. Taken together, these spots comprise a diffraction pattern.

Above is an x-ray diffraction pattern from a protein crystal. In the inset at the right, we can see that some spots seem to have duplicates which are slightly offset. This indicates that there are actually two identical crystals in the path of the x-ray, lying in slightly different orientations. Most likely, the crystal cracked in two during freezing. Fortunately, the image-processing software we use is sophisticated enough to correct for this issue.

The spacing and position of spots is governed by the size and shape of the crystal’s unit cell, the repeating unit that makes up the crystal. The intensity of each spot is determined by the distribution of electrons within the unit cell (i.e. the positions of atoms in the protein). Every atom of the unit cell contributes to each spot in the diffraction pattern. If you could change the electron density around just one atom of your crystallized protein, this would alter the intensity of every spot in the diffraction pattern!

Notice that spots farther from the center of the detector tend to be less intense. More distant spots contain higher resolution data about the electron density of the protein. If we adjust the contrast of this image, we can discern spots close to the edge of the detector. This protein diffracts x-rays to a resolution limit of 1.20 Å! In an electron density map derived from these diffraction patterns, we should be able to distinguish the positions of individual atoms.

If the crystal is rotated relative to the x-ray beam, then we would observe another diffraction pattern, as the new orientation produces constructive interference in different directions. We typically measure a new diffraction pattern at rotation intervals of 0.5 degrees, eventually rotating the crystal a total of 180 degrees (sometimes less for highly-symmetric crystals) to collect a complete dataset. This dataset was collected with a state-of-the-art detector that can measure individual photons; collecting a full dataset takes no more than a few minutes. In the early days of protein crystallography, it could take a whole day to collect a complete dataset!

The processing and interpretation of a these x-ray diffraction patterns is a complex, technical procedure, and we won't go into it here. But suffice it to say, this x-ray diffraction data revealed a full, high-resolution crystal structure of this Foldit player-designed protein!

Congratulations to Waya, Galaxie, and Susume who contributed to this solution in Puzzle 1297! All players should check out Puzzle 1384 to explore the refined electron density map from this data, and see if you can fold up the protein sequence into its crystal structure! We'll follow up later with a more detailed comparison of the designed model and the final crystal structure.

( Posted by  bkoep 113 788  |  Tue, 05/30/2017 - 04:59  |  4 comments )

Protein crystallization

It's time for an update on Foldit protein design! If you recall, our last update showed that several Foldit player-designed proteins appear folded and stable in solution. However, we'd like to have crystal structures of these proteins to show that they are indeed folding into their intended folds. The first step in getting a crystal structure is getting a protein crystal. Here we take a closer look at the protein crystallization process.

Above is a 96-well crystallization tray. We use a robot to rapidly set up crystallization experiments with 96 different conditions per tray. For this protein we set up four trays, to test a total of 384 crystallization conditions.

Each “well” in the 96-well tray is actually divided into four distinct regions. In the upper right, a square reservoir holds the mother liquor. The mother liquor is typically an aqueous buffer with some salt and a high concentration of precipitant. The reservoir is accompanied by three circular drop wells, each of which contains of drop of our protein sample mixed with the mother liquor. In this tray, the three drop wells are used to test different drop ratios, with protein and mother liquor combined in a ratio of 1:1, 2:1, or 1:2.

Each of the 96 wells is sealed off from the air and from neighboring wells. However, within a well, the three drops share an atmosphere with the reservoir, so that the drops can equilibrate with the reservoir by vapor diffusion. Over time, water evaporates from the drops and condenses in the reservoir. As the drop volume decreases, the protein concentration in the drop gradually increases. Eventually, the protein concentration reaches a critical point and the protein crystallizes.

In the drop above, we see several plate-like crystals radiating outward from a single origin. Most likely a small dust particle at the center served to “seed” the growth of all these crystals.

The crystals are not actually colored, per se, but exhibit birefringence—meaning that they refract light waves differently, depending on the orientation of the light waves with respect to the crystal lattice. When viewed through a microscope equipped with a light-polarizing filter, the birefringent crystals appear colored.

These crystals appear to be thin and plate-like, suggesting this particular crystal lattice extends readily in height and width, but less easily in depth. Sometimes, this is indicative of imperfections in the crystal packing, and can limit the quality of x-ray diffraction. To follow up, we’ll try to optimize the crystallization conditions by setting up a number of similar drops with slight alterations in the composition, in hopes that we get larger, more substantial crystals. However, there's a chance one of these crystals will diffract well enough to yield a crystal structure.

Once we have a nice, high-quality crystal that yields a good x-ray diffraction pattern, we can set about solving the crystal structure. A solved crystal structure will tell us definitively whether the protein folds up as the designer intended!

( Posted by  bkoep 113 788  |  Sat, 04/15/2017 - 00:09  |  8 comments )
Download links:
  Windows    OSX    Linux  
(10.12 or later)

Are you new to Foldit? Click here.

Are you a student? Click here.

Are you an educator? Click here.
Social Media

Other Games: Mozak
Only search
Recommend Foldit
User login
Top New Users

Developed by: UW Center for Game Science, UW Institute for Protein Design, Northeastern University, Vanderbilt University Meiler Lab, UC Davis
Supported by: DARPA, NSF, NIH, HHMI, Amazon, Microsoft, Adobe, RosettaCommons